On the Recognition of Four-Directional Orthogonal Ray Graphs

نویسندگان

  • Stefan Felsner
  • George B. Mertzios
  • Irina Mustata
چکیده

Orthogonal ray graphs are the intersection graphs of horizontal and vertical rays (i.e. half-lines) in the plane. If the rays can have any possible orientation (left/right/up/down) then the graph is a 4-directional orthogonal ray graph (4-DORG). Otherwise, if all rays are only pointing into the positive x and y directions, the intersection graph is a 2-DORG. Similarly, for 3-DORGs, the horizontal rays can have any direction but the vertical ones can only have the positive direction. The recognition problem of 2-DORGs, which are a nice subclass of bipartite comparability graphs, is known to be polynomial, while the recognition problems for 3-DORGs and 4-DORGs are open. Recently it has been shown that the recognition of unit grid intersection graphs, a superclass of 4-DORGs, is NP-complete. In this paper we prove that the recognition problem of 4-DORGs is polynomial, given a partition {L,R,U,D} of the vertices of G (which corresponds to the four possible ray directions). For the proof, given the graph G, we first construct two cliques G1, G2 with both directed and undirected edges. Then we successively augment these two graphs, constructing eventually a graph G̃ with both directed and undirected edges, such that G has a 4-DORG representation if and only if G̃ has a transitive orientation respecting its directed edges. As a crucial tool for our analysis we introduce the notion of an S-orientation of a graph, which extends the notion of a transitive orientation. We expect that our proof ideas will be useful also in other situations. Using an independent approach we show that, given a permutation π of the vertices of U (π is the order of y-coordinates of ray endpoints for U), while the partition {L,R} of V \ U is not given, we can still efficiently check whether G has a 3-DORG representation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dominating Sets in Two-Directional Orthogonal Ray Graphs

A 2-directional orthogonal ray graph is an intersection graph of rightward rays (half-lines) and downward rays in the plane. We show a dynamic programming algorithm that solves the weighted dominating set problem in O(n3) time for 2-directional orthogonal ray graphs, where n is the number of vertices of a graph. key words: Boolean-width, dominating set, dynamic programming, twodirectional ortho...

متن کامل

Application of Power-Law Frequency Fractal Model for Recognition of Vertical Cu Distribution in Milloieh Porphyry Deposit, SE Iran

Identification of the vertical and horizontal distributions for elemental grades is of an important sign in different mineral exploration stages. The main aim of this work is to determine the vertical distribution directional properties of Cu values in the Milloieh Cu porphyry deposit, Kerman (SE Iran) using the power-law frequency fractal model. This work is carried out based on four mineraliz...

متن کامل

Intersection Dimension of Bipartite Graphs

We introduce a concept of intersection dimension of a graph with respect to a graph class. This generalizes Ferrers dimension, boxicity, and poset dimension, and leads to interesting new problems. We focus in particular on bipartite graph classes defined as intersection graphs of two kinds of geometric objects. We relate well-known graph classes such as interval bigraphs, two-directional orthog...

متن کامل

Automatic Face Recognition via Local Directional Patterns

Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...

متن کامل

OBDD Representation of Intersection Graphs

Ordered Binary Decision Diagrams (OBDDs for short) are popular dynamic data structures for Boolean functions. In some modern applications, we have to handle such huge graphs that the usual explicit representations by adjacency lists or adjacency matrices are infeasible. To deal with such huge graphs, OBDD-based graph representations and algorithms have been investigated. Although the size of OB...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013